12

Answer Section

MULTIPLE CHOICE

1. ANS: A
A.

PTS: 1
2. ANS: C
3. ANS: C
4. ANS: B
5. ANS: C
6. ANS: A
7. ANS: D
8. ANS: C
9. ANS: B
10. ANS: D Solution

PTS:	1	DIF:	I	OBJ:	$1-1.1$
PTS:	1	DIF:	I	OBJ:	$1-1.1$
PTS:	1	DIF:	I	OBJ:	$1-1.2$
PTS:	1	DIF:	I	OBJ:	$1-1.2$
PTS:	1	DIF:	I	OBJ:	$1-1.2$
PTS:	1	DIF:	I	OBJ:	$1-1.3$
PTS:	1	DIF:	II	OBJ:	$1-2.1$
PTS:	1	DIF:	II	OBJ:	$1-2.3$

$$
\begin{aligned}
& 21.4 \\
& 15 . \\
& 17.17 \\
& +4.003 \\
& \hline 57.573
\end{aligned}
$$

Answer rounds to 58 and is written as 5.8×10^{1} in scientific notation.
PTS: 1 DIF: IIIA OBJ: 1-2.4
11. ANS: B
12. ANS: C

PTS: 1
DIF: II
OBJ: 1-3.1
12. ANS. C

PTS: 1
DIF: II
OBJ: 1-3.1
13. ANS: B

Solution
$m \frac{(\Delta x)^{2}}{(\Delta t)^{2}}=(\mathrm{kg}) \times \frac{\left(\mathrm{m}^{2}\right)}{\left(\mathrm{s}^{2}\right)}=\mathrm{kgm}^{2} / \mathrm{s}^{2}$

PTS: 1
14. ANS: A
15. ANS: C
16. ANS: C
17. ANS: B
18. ANS: C

DIF: IIIA
OBJ: 1-3.3
PTS: 1
DIF: I
OBJ: 2-1.1
DIF: I
OBJ: 2-1.1
DIF: I
OBJ: 2-1.1
PTS: 1

OBJ: 2-1.1
19. ANS: B

PTS: 1
DIF: I
DIF: I
OBJ: 3-1.1
DIF: II
OBJ: 3-1.1
20. ANS: C

Given
$\mathbf{v}_{1}=10.0 \mathrm{~m} / \mathrm{s}$ south
$\mathbf{v}_{2}=2.5 \mathrm{~m} / \mathrm{s}$ north
Solution
$v_{R}=v_{I}-v_{2}=10.0 \mathrm{~m} / \mathrm{s}-2.5 \mathrm{~m} / \mathrm{s}=7.5 \mathrm{~m} / \mathrm{s}$
$\mathbf{v}_{\mathrm{R}}=7.5 \mathrm{~m} / \mathrm{s}$ south

PTS: 1
21. ANS: C
22. ANS: C
23. ANS: D
24. ANS: D
25. ANS: D
26. ANS: A

Given
$F_{\text {qyphied }}=6.8 \mathrm{~N}$
$m=31 \mathrm{~kg}$
Solution
$F_{\text {net }}=\sum F_{n}=F_{\text {typhied }}=m a_{x}$
$a_{x}=\frac{F_{\text {aqpiged }}}{m}=\frac{6.8 \mathrm{~N}}{31 \mathrm{~kg}}=0.22 \mathrm{~m} / \mathrm{s}^{2}$
PTS: 1
DIF: IIIA
OBJ: 4-3.2
27. ANS: B

Given
$F_{g, b o o k}=5 \mathrm{~N}$
$\mu_{s}=0.2$

Solution

$\Sigma F_{x}=F_{\text {ayplied }}-F_{s, m a x}=0$

$F_{g}=(5 \mathrm{~N}+5 \mathrm{~N}+5 \mathrm{~N}+5 \mathrm{~N}+5 \mathrm{~N})=25 \mathrm{~N}$

PTS: 1
DIF: IIIA
OBJ: 4-4.4
28. ANS: A

Given
$v_{i}=15.0 \mathrm{~m} / \mathrm{s}$
$\Delta x=28.7 \mathrm{~m}$

OBJ: 3-1.2
DIF: I OBJ: 3-2.1
DIF: I
DIF: I
DIF: II
DIF: I

OBJ: 3-2.3
OBJ: 4-1.1
OBJ: 4-1.2
OBJ: 4-2.3
$g=9.81 \mathrm{~m} / \mathrm{s}^{2}$
Solution
$\Sigma F_{n}=F_{\text {azpied }}-F_{s, m a x}=0$
$F_{\text {s.max }}=F_{\text {aqy }}{ }_{\text {wied }}$
$\mu_{s} m g=m a$
$\mu_{s}=\frac{a}{g}$
Because $v_{f}=0, a=\frac{-\left(v_{i}\right)^{2}}{2(\Delta x)}$
$a=\frac{-(15.0 \mathrm{~m} / \mathrm{s})^{2}}{2(28.7 \mathrm{~m})}=-3.92 \mathrm{~m}^{2} / \mathrm{s}^{2}$, so the magritude of $a=3.92 \mathrm{~m} / \mathrm{s}^{2}$
$\mu_{s}=\frac{a}{g}=\frac{3.92 \mathrm{~m}^{\prime} \mathrm{s}^{2}}{9.81 \mathrm{~m}^{2} \mathrm{~s}^{2}}=0.400$
PTS: 1
29. ANS: A
30. ANS: D
31. ANS: D
32. ANS: D
33. ANS: A
34. ANS: D

DIF: IIIB
OBJ: 4-4.4
PTS: 1
DIF: I
OBJ: 5-2.1
PTS: 1
DIF: I
OBJ: 5-2.3
PTS: 1
DIF: I
OBJ: 5-3.1
PTS: 1
DIF: I
OBJ: 5-4.1
PTS: 1
DIF: I
OBJ: 6-1.2
35. ANS: A

Given
$p_{i}=4.0 \mathrm{kgm} / \mathrm{s}$
$p_{f}=-4.0 \mathrm{kgm} / \mathrm{s}$
Solution
$\Delta p=p_{f}-p_{i}=(-4.0 \mathrm{kgm} / \mathrm{s})-4.0 \mathrm{kgm} / \mathrm{s}=-8.0 \mathrm{kgm} / \mathrm{s}$
PTS: 1
36. ANS: B
37. ANS: A
38. ANS: B
39. ANS: D
40. ANS: C

DIF: II
OBJ: 6-1.3
PTS: 1 DIF: II
DIF: II
DIF: II
DIF: I
DIF: I
OBJ: 6-2.1
PTS: 1
PTS: 1
PTS: 1
41. ANS: B

PTS: 1
DIF: I
OBJ: 6-2.1
OBJ: 6-2.2
OBJ: 6-3.1
OBJ: 6-3.1
OBJ: 6-3.3

SHORT ANSWER

44. ANS:

$9.2 \times 10^{8} \mathrm{dm}$

Solution

$\left(92 \times 10^{3} \mathrm{~km}\right)\left(\frac{10^{4} \mathrm{dm}}{1 \mathrm{~km}}\right)=92 \times 10^{7} \mathrm{dm}=9.2 \times 10^{8} \mathrm{dm}$
PTS: 1
DIF: IIIA
OBJ: 1-2.2
45. ANS:
$1 \times 10^{-6} \mathrm{~m}$
Solution
$(1 \mu \mathrm{~m})\left(\frac{10^{-6} \mathrm{~m}}{1 \mu \mathrm{~m}}\right)=1 \times 10^{-6} \mathrm{~m}$
PTS: 1
DIF: IIIA
OBJ: 1-2.2
46. ANS:

Any two of the following: summarize data; describe the relationship between variables; reproduce a graph; make predictions
PTS: 1
DIF: I
OBJ: 1-3.1
47. ANS:

PTS: 1
DIF: II
OBJ: 1-3.1
48. ANS:

The car is at rest (not moving).
PTS: 1
DIF: I
OBJ: 2-1.1
49. ANS:
displacement
PTS: 1
DIF: I
OBJ: 2-1.1
50. ANS:

The magnitudes of the displacements are equal, but the displacements are in opposite directions. Therefore, one displacement is positive and one displacement is negative.

PTS: 1 DIF: II OBJ: 2-1.1
51. ANS:

A scalar quantity is a quantity that has only magnitude.
PTS: 1 DIF: I
OBJ: 3-1.1
52. ANS:

Average speed is a scalar quantity.
PTS: 1
DIF: I
OBJ: 3-1.1
53. ANS:
force
PTS: 1
DIF: I
OBJ: 4-1.1
54. ANS:
newton
PTS: 1 DIF: I OBJ: 4-1.1
55. ANS:

The object experiences an acceleration.
PTS: 1 DIF: I OBJ: 4-2.1
56. ANS:
net force
PTS: 1
DIF: I
OBJ: 4-2.1
57. ANS:
everyday meaning
PTS: 1 DIF: I
OBJ: 5-1.1
58. ANS:
scientific meaning
PTS: 1 DIF: I OBJ: 5-1.1
59. ANS:

Work is equal to the magnitude of the component of a force parallel to the displacement of an object multiplied by the displacement of the object.

PTS: 1 DIF: I OBJ: 5-1.2
60. ANS:

Work is a scalar quantity.
PTS: 1 DIF: I OBJ: 5-1.2
61. ANS:

Power measures how much work is done in a given time interval. In other words, power is the rate of work.
PTS: 1 DIF: I OBJ: 5-4.1
62. ANS:

The 20 kW motor does twice as much work in the same amount of time.
PTS: 1
DIF: II
OBJ: 5-4.3
63. ANS:

The student has the least momentum when dodging the opening door.
PTS: 1 DIF: I OBJ: 6-1.2
64. ANS:

Yes, a spaceship traveling with constant velocity could experience a change in momentum if its mass changed, for example, by burning fuel, or if it is acted upon by an outside force.

PTS: 1
DIF: II
OBJ: 6-1.3
65. ANS:
inelastic
PTS: 1
DIF: I
OBJ: 6-3.1

