NAME ______ DATE _____ CLASS _____

Forces and the Laws of Motion

HOLT PHYSICS Diagram Skills

Newton's First Law

A lantern of mass *m* is suspended by a string that is tied to two other strings, as shown in the figure below. The free-body diagram shows the forces exerted by the three strings on the knot.

- **1.** In terms of **F**₁, **F**₂, and **F**₃, what is the net force acting on the knot? (Hint: The lantern is in equilibrium.)
- 2. Find the magnitudes of the *x* and *y* components for each force acting on the knot. (Assume the positive directions are to the right and up.)

String 1 (F_1)	x component	y component
String 2 (F_2)	x component	y component
String 3 (F_3)	x component	<i>y</i> component

3. In terms of F_1 , F_2 , and F_3 , what is the magnitudes of the net force acting on the knot in the *x* direction? in the *y* direction?

 $F_{x net} =$ $F_{\gamma net} =$

4. Assume that $\theta_1 = 30^\circ$, $\theta_2 = 60^\circ$, and the mass of the lantern is 2.1 kg. Find *F*₁, *F*₂, and *F*₃.

 $F_{1} =$ _____ *F*₂ = _____ *F*₃ = _____