\qquad
\qquad
\qquad

HOLT PHYSICS

Concept Review

Circular Motion

1. A Ferris wheel car is moving in a circular path at a constant speed.
a. Is the car accelerating? \qquad
b. How can the car have a non-zero acceleration if the speed is constant?
\qquad
\qquad
c. What is the direction of centripetal acceleration?
d. What is the magnitude of the centripetal acceleration if the tangential speed of the car is $2.0 \mathrm{~m} / \mathrm{s}$ and the radius of the wheel is 83 m ?
2. The hammer throw is a track-and-field event in which the thrower swings a heavy metal ball (the "hammer") on a wire in a circular motion, then releases the wire, sending the hammer flying.
a. What provides the force to keep the hammer moving in a circle before the wire is released?
b. What is the name for this force? \qquad
c. In what direction does this force act? \qquad
d. What is the term for the hammer's tendency to move in a straight line?
e. Suppose the hammer has a mass of 7.26 kg , the wire is 1.00 m long, and the force keeping the hammer moving in a circle is $7.43 \times 10^{3} \mathrm{~N}$. What will the hammer's speed be when the thrower releases the wire?
