* Probability is the measure of how likely an event is to happen * Experiment. is any Process
the generates one or more Possible outcomes.
* Event. is out come or set of out comes in the sample space.

$$
\begin{aligned}
& P(\text { boy })=\frac{5}{16} \\
& P(\text { even vo })=\frac{3}{6}=\frac{1}{2}
\end{aligned}
$$

* Probability Distribution.

Is to describeall the events in a function, with a domain of Sample Spare and range in the interval $[0,1]$
a) Example 1. 8865.
a) Sample space: red, yellow,
a) Sumpland green so 10

$$
\text { c) } \begin{aligned}
P(\text { blue or green }) & =0.3+0.1 \\
& =0.4
\end{aligned}
$$

* Mutually Exclusive Events.

Are events that have no
Common out comes.
-The 2 events Cannot happen at the same time.

Example.
When rolling a fair die, tell whether the following events are mutually exclusive events.
a) Getting an even nomad an odd no.
$E=\{2,4,16\}, O=\{1,3,5\}$ Mutably
b) getting a roles than 4, and amu Lisle of S Sally Exc.
 multiple of $3\{3,6\}$

Not mut exc.
d] Getting a vo greater than 2, and a factor of 8

$$
\{3,4,5,6\},\{1,2,4\}\}
$$

Not mut. exc.

* Independent Events.

Two events the occurance of one of them doesult affect the probability of the other.

* DePendent Events.

Are 2 events the occurense of one of them affects the probability of the other.

Example. Tell if the following events are dependent or independent, and find the Probability of each.
2 Cards are drown from ocadl. deck of 52 .
a] selecting 2 aces when the $1^{\text {st }}$ Card is replaced. 1,ude Pendent. $1^{\text {st }}$ draw and 2 dod art

$$
P(2 \text { ens }) \frac{4}{5^{2}} \cdot \frac{4}{5^{2}}=\frac{1}{169}
$$

b) Selecting 2 aces when int Card is not replaced.
Dependent

$$
P(\text { Daces })=\frac{4}{52} \cdot \frac{3}{51}=\frac{1}{221}
$$

c] Selecting a face card without replacing it, then selecting a 7 . dependent event

$$
\frac{12}{52} \cdot \frac{4}{51}=\frac{4}{221}
$$

d) Selecting 2 hearts, and the $1{ }^{1 \text { th }}$ card is replaced.
Independent $\frac{13}{52} \cdot \frac{13}{52}=\frac{1}{16}$
e] Selecting a queen withat replacing it, then selecting king Dependendent.

$$
\frac{4}{52} \cdot \frac{4}{51}=\frac{4}{663}
$$

* If A and B are independ events, then $P(A$ and $B)=P(A) \cdot P(B)$.
* If A and B are dependent events, then $P(A$ and $B)=$

$$
P(A) \cdot P(B / A)
$$

Concidering that A has happened.

* Complement of an event.
is the set of all outcomes that are not Contained in the event. Complement of an event $\rightarrow P^{\prime}$ $P^{\prime}=1-P$

Exercise. 13.3 P872
5

$$
\begin{aligned}
& P(\text { white })=1-\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{1}{6} \\
& 6 P(3 \text { blacks })=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8} \\
& 7 P(3 \text { white })=\left(\frac{1}{6}\right)^{3}=\frac{1}{216} \\
& 8 P(b, \omega, r)=\frac{1}{2} \cdot \frac{1}{6} \cdot \frac{1}{3}=\frac{1}{36} \\
& P\left((\text { ed, }, \text {, b })=\frac{1}{3} \cdot \frac{1}{6} \cdot \frac{1}{2}=\frac{1}{36}\right. \\
& \frac{1}{36}
\end{aligned}
$$

$$
\frac{1}{36} \cdot 6=\frac{1}{6}
$$

13.3Basic Probability

Mutually ex.

$$
\begin{gathered}
P(A \text { or } B)=P(A)+P(B) \\
P(A \text { and } B)=P(A) \cdot P(B) \\
\text { Ind. or dep. }
\end{gathered}
$$

Inclusive events.
Are events that have one or more common out comes.

$$
P(A \text { or } B)=P(A)+P(B)-P(A \propto a b)
$$

together

Example.
Find each Probability when
Rolling a die.

1) Rolling an even wo or a Prime re.

$$
P(E \text { or } P)=\frac{1}{2}+\frac{1}{2}-\frac{1}{6}=\frac{5}{6}
$$

2) Rolling a 5 or an odd we.

$$
P(5 \text { or } 0)=\frac{1}{6}+\frac{1}{2}-\frac{1}{6}=\frac{1}{2}
$$

3 Rolling anoddre or a ne greater than 2

$$
P(0 \text { or }>2)=\frac{1}{2}+\frac{4}{6}-\frac{2}{6}=\frac{5}{6}
$$

Exercise
of 3510 drivers surveyed, 1950 were males, and 103 were color-blind only 6 of the color-blind divers were females. What is the Probability that a driver is chosen at random is a male of color-blind?

$$
\begin{aligned}
& \text { male of color-blind }\left(M \text { or }(B)=P(M)+P(C B)-P\left(\mu_{1}(B)\right.\right. \\
& \frac{1950}{3510}+\frac{103}{3510}-\frac{97}{3510}= \\
& \frac{1950+6 \mathrm{Fen}}{35103-97}=\frac{326}{585}
\end{aligned}
$$

Exercise
of 160 beauty sPa Customers
96 had a hair styling and
61 had a manicure. There were 28 customers whoa had only a manicure. What is the Probability that a customer had a hair styling or a manicure?

* Random Variable.

Is a function that assigns ane to eachoutcone.

* Expected value.
S the average value of the outcomes.

Exercise 13.3. P872,873.
II) $\left\{\begin{array}{l}0,1,2\} \\ y\end{array}\right.$,

Noblue arebluy
(12) $P($ both 2 blue $)=\frac{3}{8} \cdot \frac{3}{8}=\frac{9}{64}$

13 (Neither blue $)=\frac{5}{8} \cdot \frac{5}{8}=\frac{25}{64}$
140
(5) $1-\left(\frac{25+9}{64}\right)=\frac{30}{64}=\frac{15}{32}$
P (only one blue) $=\frac{3}{8} \cdot \frac{5}{8}\left(\frac{5}{8} \cdot \frac{3}{8} \cdot \frac{15}{82}\right.$
16) Expectedualue $=$

$$
0 \cdot \frac{25}{64}+1 \cdot \frac{15}{32}+2 \cdot \frac{9}{64}=\frac{3}{4}
$$

21 P (at least ore isabsend)

$$
\begin{aligned}
& 21 P(\text { at least ore isansend) } \\
& P(1)+P(2)+P(3)+P(4)+P(5)= \\
& 0.33+0.07+0.01+0+0=0.41 \\
& 0 R
\end{aligned}
$$

$P($ at least one is absent $)=$

$$
1-P(0 \text { absent })
$$

$$
1-0.59=0.41
$$

Fundamental counting Principle.

$$
2 \neq 262626=26^{4}=
$$

Ordering the elements of one group
factorial! all.

al!	Permutation Combination Some some
$10 P_{3}$	$10 C 3=120$
$n P r$	$n<r$
$n!$	$\frac{n!}{(n-r)!}$
$(n-r)!$	

$$
n \left\lvert\, r=\frac{1}{(n-r)!}-\frac{\cdots}{7 \cdot 60.504 \times 1 /}\right.
$$

B. P88318 $\rightarrow 26$.
$185 \cdot 2 \cdot 3=30$

$$
\begin{gathered}
\text { T9.F } \\
2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot \\
2^{5} \cdot 4^{3}=204 \cdot 4 \cdot 4
\end{gathered}
$$

digits lett.
20 40.6.to 26.26 .26

$$
26^{3} \cdot 10^{3}=17,576,000
$$

21] $25 C_{10}=3,268,760$
22) $8 P_{3}=336$
$239!=362,880$
(24) $700 C_{3}=56,921,900$
$25 \frac{1}{4!}=\frac{1}{24}$
26 $\frac{1}{50 P 6}=8.74 \times 10^{-11}$

A binomial experiment is an experiment that has only 2 Possible ont comes, either success or failure.

* P (Successilutrials)

$$
n C r \cdot p^{r} \cdot q^{n-r}
$$

$n \rightarrow$ no of trials
$\xrightarrow[P \rightarrow \text { De }]{ } \rightarrow$ success fultrials
$P \rightarrow$ Probability of Surcess
$q \rightarrow$ Probability of failmer(1-p)

Example 1.P884
In a basket ball contest, each Contestant is allowed 3 free-throws. If a player has achance 70\% of making each throw. What is the Probability of making exactly 2 out of 3 throws?

$$
\begin{aligned}
& n C_{r} p^{r} q^{n-r} \\
& 3 C_{2} \cdot(0 \cdot 7)^{2} \cdot 0.3=0.4 .41
\end{aligned}
$$

Exercise
A baseball Player has a Probability 0.3 of getting a hit. What is the Probabilly of getting exactly 1 hit of 4 times at bat?

$$
{ }_{4} C_{1}(0.3)^{1}(0.7)^{3}=0.4116
$$

Example2.P886
$\$ 10001000$ 2 times ormore

$$
\begin{aligned}
& P(2 \text { times or more })= \\
& P(2)+P(3)+P(4)+P(5 \text { ormore }) \\
& 0 r \\
& 1-(P(0)+P(1))=0.2642
\end{aligned}
$$

Example3.P887

Correction of HW

4 5 P3 $=60$
6) $11 C_{3}=165$
8) $9 P \bar{P}=3024$
10) $G P_{3}=120$

B $9.25=225$
(14) $8 C_{2}=28$

$$
\begin{gathered}
123456 \frac{1}{7} 8=\frac{1}{28} \\
\frac{1 x}{48} \times \frac{1}{7}=\frac{1}{28}
\end{gathered}
$$

同 $8 P_{3}=336$
16) $\frac{12 P_{3}=1320}{5 C_{3}=10}$
(18) $4 \times 3=12$
(9) $\quad P P_{2}=72$

20] $\overline{5 P_{2}=20}$
$211_{10} P_{4}=\frac{5040}{y}$
sample space

$$
\begin{aligned}
& \overleftarrow{0123,1234,2345,3456,4567,} \overleftarrow{5678,6789} \\
& \frac{14}{5040}=\frac{1}{360}
\end{aligned}
$$

Expected value for a binomial experiments

$$
\begin{aligned}
& n P_{\text {probability }} \\
& =\begin{array}{l}
\text { ne of } \\
\text { trials } \\
\text { Success }
\end{array} \\
&
\end{aligned}
$$

